Michael B. Albro

Marie Curie Fellow, Department of Materials, Imperial College, London 2014-present; Post-doctoral Fellow 2010-2014; Ph.D. 2010
212-854-4259

Research Interests

  • Solute transport in soft tissues and gels
  • Osmotic loading of cells

 

Education

  • B.S. Binghamton University, Mechanical Engineering, May 2003
  • M.S. Columbia University, Biomedical Engineering, May 2005
  • M.Phil. Columbia University, Biomedical Engineering, May 2008
  • Ph.D. Columbia University, Biomedical Engineering, May 2010
  • Postdoctoral Research Scientist, Mechanical Engineering, March 2014

Michael began working in the Musculoskeletal Biomechanics Laboratory in the Summer of 2004 as a Masters student in Biomedical Engineering. Shortly after this period, since it was determined that he was an invaluable asset to the lab, Michael was strongly urged to continue his research as a Doctoral student. Michael's current research focuses on solute transport in dynamically loaded porous media and solute partitioning in the cellular cytoplasm.

In his spare time, and while at work, Michael spends countless hours reading the Daily Racing Form while listening to Steely Dan.

Albro, M. B., Chahine, N. O., Caligaris, M., Wei, V. I., Likhitpanichkul, M., Ng, K. W., Hung, C. T., and Ateshian, G. A., 2007. Osmotic loading of spherical gels: a biomimetic study of hindered transport in the cell protoplasm. J Biomech Eng 129, 503-510, PMCID: PMC2828939, PubMed.

Albro, M. B., Chahine, N. O., Li, R., Yeager, K., Hung, C. T., and Ateshian, G. A., 2008. Dynamic loading of deformable porous media can induce active solute transport. J Biomech 41, 3152-3157, PMCID: PMC2633098, PubMed.

Azeloglu, E. U., Albro, M. B., Thimmappa, V. A., Ateshian, G. A., and Costa, K. D., 2008. Heterogeneous transmural proteoglycan distribution provides a mechanism for regulating residual stresses in the aorta. Am J Physiol Heart Circ Physiol 294, H1197-1205, PubMed.

Albro, M. B., Petersen, L. E., Li, R., Hung, C. T., and Ateshian, G. A., 2009. Influence of the partitioning of osmolytes by the cytoplasm on the passive response of cells to osmotic loading. Biophys J 97, 2886-2893, PMCID: PMC2784563, PubMed.

Albro, M. B., Rajan, V., Li, R., Hung, C. T., and Ateshian, G. A., 2009. Characterization of the Concentration-Dependence of Solute Diffusivity and Partitioning in a Model Dextran-Agarose Transport System. Cell Mol Bioeng 2, 295-305, PMCID: PMC2996616, PubMed.

Chahine, N. O., Albro, M. B., Lima, E. G., Wei, V. I., Dubois, C. R., Hung, C. T., and Ateshian, G. A., 2009. Effect of dynamic loading on the transport of solutes into agarose hydrogels. Biophys J 97, 968-975, PMCID: PMC2726307, PubMed.

Albro, M. B., Li, R., Banerjee, R. E., Hung, C. T., and Ateshian, G. A., 2010. Validation of theoretical framework explaining active solute uptake in dynamically loaded porous media. J Biomech 43, 2267-2273, PMCID: PMC2993250, PubMed.

Albro, M. B., Banerjee, R. E., Li, R., Oungoulian, S. R., Chen, B., del Palomar, A. P., Hung, C. T., and Ateshian, G. A., 2011. Dynamic loading of immature epiphyseal cartilage pumps nutrients out of vascular canals. J Biomech 44, 1654-1659, PMCID: PMC3124764, PubMed.

Ateshian, G. A., Albro, M. B., Maas, S., and Weiss, J. A., 2011. Finite element implementation of mechanochemical phenomena in neutral deformable porous media under finite deformation. J Biomech Eng 133, 081005, PMCID: PMC3431289, PubMed.

Albro, M. B., Cigan, A. D., Nims, R. J., Yeroushalmi, K. J., Oungoulian, S. R., Hung, C. T., and Ateshian, G. A., 2012. Shearing of synovial fluid activates latent TGF-beta. Osteoarthritis Cartilage 20, 1374-1382, PMCID: PMC3448789, PubMed.

O'Connell, G. D., Lima, E. G., Bian, L., Chahine, N. O., Albro, M. B., Cook, J. L., Ateshian, G. A., and Hung, C. T., 2012. Toward engineering a biological joint replacement. J Knee Surg 25, 187-196, PMCID: PMC3700804, PubMed.

Albro, M. B., Nims, R. J., Cigan, A. D., Yeroushalmi, K. J., Alliston, T., Hung, C. T., and Ateshian, G. A., 2013. Accumulation of exogenous activated TGF-beta in the superficial zone of articular cartilage. Biophys J 104, 1794-1804, PMCID: PMC3627867, PubMed.

Albro, M. B., Nims, R. J., Cigan, A. D., Yeroushalmi, K. J., Shim, J. J., Hung, C. T., and Ateshian, G. A., 2013. Dynamic mechanical compression of devitalized articular cartilage does not activate latent TGF-beta. J Biomech 46, 1433-1439, PMCID: PMC3810401, PubMed.

Cigan, A. D., Nims, R. J., Albro, M. B., Esau, J. D., Dreyer, M. P., Vunjak-Novakovic, G., Hung, C. T., and Ateshian, G. A., 2013. Insulin, ascorbate, and glucose have a much greater influence than transferrin and selenous acid on the in vitro growth of engineered cartilage in chondrogenic media. Tissue Eng Part A 19, 1941-1948, PMCID: PMC3725793, PubMed.

Nims, R. J., Cigan, A. D., Albro, M. B., Hung, C. T., and Ateshian, G. A., 2013. Synthesis rates and binding kinetics of matrix products in engineered cartilage constructs using chondrocyte-seeded agarose gels. J Biomech, PubMed.

500 W. 120th St., 134A Mudd, New York, NY 10027    212-854-4259                
©2014 Columbia University